Zeros of Random Polynomials On
نویسنده
چکیده
For a regular compact set K in C and a measure μ on K satisfying the Bernstein-Markov inequality, we consider the ensemble PN of polynomials of degree N , endowed with the Gaussian probability measure induced by L(μ). We show that for large N , the simultaneous zeros of m polynomials in PN tend to concentrate around the Silov boundary of K; more precisely, their expected distribution is asymptotic to Nμeq , where μeq is the equilibrium measure of K. For the case where K is the unit ball, we give scaling asymptotics for the expected distribution of zeros as N → ∞.
منابع مشابه
Domain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملOn Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملExpected Discrepancy for Zeros of Random Polynomials
We study asymptotic clustering of zeros of random polynomials, and show that the expected discrepancy of roots of a polynomial of degree n, with not necessarily independent coefficients, decays like √ logn/n. Our proofs rely on discrepancy results for deterministic polynomials, and order statistics of a random variable. We also consider the expected number of zeros lying in certain subsets of t...
متن کاملExpected Discrepancy for Zeros of Random Algebraic Polynomials
We study asymptotic clustering of zeros of random polynomials, and show that the expected discrepancy of roots of a polynomial of degree n, with not necessarily independent coefficients, decays like √ logn/n. Our proofs rely on discrepancy results for deterministic polynomials, and order statistics of a random variable. We also consider the expected number of zeros lying in certain subsets of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005